
Next steps for Checked C
DAVID TARDITI

LIGHTNING TALK, PACIFIC NORTHWEST WORKSHOP ON PROGRAMMING LANGUAGES AND SOFTWARE ENGINEERING

MAY 9, 2023

1

https://sites.google.com/cs.washington.edu/pnwplseworkshop/home

Checked C

 Extends C with type-safety

 New pointer types: _Ptr, _Array_ptr, _Nt_array_ptr

 Declare bounds for _Array_ptr

 Null/bounds checking at runtime

 Checked regions

 Restrictions on unsafe pointers/casts.

 Assumption: memory mgmt is correct.

 Includes language spec, compiler, and tools for translation

 Language spec/compiler developed at Microsoft from 2015-2021

 No real-world use, even though spatial safety remains a big
problem!

2

Continues as open-source research

project

 Fork at https://github.com/secure-sw-dev.

 Setup non-profit “Secure Software Development Project”.

 Working with Aravind Machiry, Mike Hicks, John Criswell, and others.

 Recent contributions:

 3C tool for translating C to Checked C (Aravind Machiry, Mike Hicks and

others). OOPSLA ’22 (Distinguished Paper).

 Fat-pointers for temporal safety (Jie Zhou, John Criswell, and Mike Hicks),

Upcoming OOPSLA ’23.

 Support for erasing annotations for C compilers that don’t support

Checked C (in progress).

 Experiments with converting open-source systems code.

3

https://github.com/secure-sw-dev

Code must still compile with existing

compilers.

 Checked C is backward-compatible: existing C code is valid (but

unsafe).

 The Checked C extensions do not work with existing C compilers,
though!

 Feedback/experience:

 “But I own an open-source C library/RTOS/OS/utility. It needs to compile

with other compilers. I can’t add your annotations.”

 Working on supporting erasure of annotations using macros.

4

Pursue more verification

 Introduced dynamic bounds checks and null-pointer checks.

 A program terminates with a signals if check fails (could use signals to

catch them).

 We think: This is great! No more undefined behavior! (PL centric

view)

 Feedback:

 “But now my program crashes and it might have still worked before. This

is terrible!”

 Programmers prefer program not crash at all due to these errors.

 They actually want more verification capabilities.

5

Add a static checking only mode

 We extended the dynamic semantics of the language.

 Now it only works with our modified clang compiler.

 No one wants to switch compilers. Especially to a research-based

compiler!

 Linux uses GCC, Windows uses Visual C++.

 The necessary checks could be written by the programmer instead.

 Open question: how hard is it to write the checks/prove safety?

6

Languages and verification

 In the future, all languages for writing secure software will have

verification built-in!

 Verification technology is getting too good to ignore.

 Problem: existing widely-used languages don’t have verification

built-in.

 What to do about them?

 One approach: retrofit verification technologies.

 Some verification is better than none.

 Lessons learned from Checked C apply.

7

Lessons

 Make sure code compiles with existing compilers.

 Write stand-alone checker/verifier tools if possible.

 Yes, you might miss some subtle aspects for a specific compiler. That

can be fixed.

 Pursue more verification.

 You’ll be able to prove (some) properties programmers really care

about.

 Automatic formal verification that shades into deductive verification is

fine.

8

	Slide 1: Next steps for Checked C
	Slide 2: Checked C
	Slide 3: Continues as open-source research project
	Slide 4: Code must still compile with existing compilers.
	Slide 5: Pursue more verification
	Slide 6: Add a static checking only mode
	Slide 7: Languages and verification
	Slide 8: Lessons

