
Next steps for Checked C
DAVID TARDITI

LIGHTNING TALK, PACIFIC NORTHWEST WORKSHOP ON PROGRAMMING LANGUAGES AND SOFTWARE ENGINEERING

MAY 9, 2023

1

https://sites.google.com/cs.washington.edu/pnwplseworkshop/home

Checked C

 Extends C with type-safety

 New pointer types: _Ptr, _Array_ptr, _Nt_array_ptr

 Declare bounds for _Array_ptr

 Null/bounds checking at runtime

 Checked regions

 Restrictions on unsafe pointers/casts.

 Assumption: memory mgmt is correct.

 Includes language spec, compiler, and tools for translation

 Language spec/compiler developed at Microsoft from 2015-2021

 No real-world use, even though spatial safety remains a big
problem!

2

Continues as open-source research

project

 Fork at https://github.com/secure-sw-dev.

 Setup non-profit “Secure Software Development Project”.

 Working with Aravind Machiry, Mike Hicks, John Criswell, and others.

 Recent contributions:

 3C tool for translating C to Checked C (Aravind Machiry, Mike Hicks and

others). OOPSLA ’22 (Distinguished Paper).

 Fat-pointers for temporal safety (Jie Zhou, John Criswell, and Mike Hicks),

Upcoming OOPSLA ’23.

 Support for erasing annotations for C compilers that don’t support

Checked C (in progress).

 Experiments with converting open-source systems code.

3

https://github.com/secure-sw-dev

Code must still compile with existing

compilers.

 Checked C is backward-compatible: existing C code is valid (but

unsafe).

 The Checked C extensions do not work with existing C compilers,
though!

 Feedback/experience:

 “But I own an open-source C library/RTOS/OS/utility. It needs to compile

with other compilers. I can’t add your annotations.”

 Working on supporting erasure of annotations using macros.

4

Pursue more verification

 Introduced dynamic bounds checks and null-pointer checks.

 A program terminates with a signals if check fails (could use signals to

catch them).

 We think: This is great! No more undefined behavior! (PL centric

view)

 Feedback:

 “But now my program crashes and it might have still worked before. This

is terrible!”

 Programmers prefer program not crash at all due to these errors.

 They actually want more verification capabilities.

5

Add a static checking only mode

 We extended the dynamic semantics of the language.

 Now it only works with our modified clang compiler.

 No one wants to switch compilers. Especially to a research-based

compiler!

 Linux uses GCC, Windows uses Visual C++.

 The necessary checks could be written by the programmer instead.

 Open question: how hard is it to write the checks/prove safety?

6

Languages and verification

 In the future, all languages for writing secure software will have

verification built-in!

 Verification technology is getting too good to ignore.

 Problem: existing widely-used languages don’t have verification

built-in.

 What to do about them?

 One approach: retrofit verification technologies.

 Some verification is better than none.

 Lessons learned from Checked C apply.

7

Lessons

 Make sure code compiles with existing compilers.

 Write stand-alone checker/verifier tools if possible.

 Yes, you might miss some subtle aspects for a specific compiler. That

can be fixed.

 Pursue more verification.

 You’ll be able to prove (some) properties programmers really care

about.

 Automatic formal verification that shades into deductive verification is

fine.

8

	Slide 1: Next steps for Checked C
	Slide 2: Checked C
	Slide 3: Continues as open-source research project
	Slide 4: Code must still compile with existing compilers.
	Slide 5: Pursue more verification
	Slide 6: Add a static checking only mode
	Slide 7: Languages and verification
	Slide 8: Lessons

